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We present a general strategy for proving ergodicity for stochastically forced
nonlinear dissipative PDEs. It consists of two main steps. The first step is the
reduction to a finite dimensional Gibbsian dynamics of the low modes. The
second step is to prove the equivalence between measures induced by different
past histories using Girsanov theorem. As applications, we prove ergodicity for
Ginzburg–Landau, Kuramoto–Sivashinsky and Cahn–Hilliard equations with
stochastic forcing.

KEY WORDS: Ergodicity; invariant measures; stationary processes; infinite-
dimensional random dynamical systems; stochastic partial differential equations.

1. INTRODUCTION

The main objective of this paper is to prove uniqueness of invariant mea-
sures for stochastically forced dissipative PDEs of the form:

“u
“t
=−Au+R(u)+

“W(x, t)
“t

, (1)

when all determining modes are forced. After establishing a general
framework to address this question, we present applications to three
popular dissipative PDEs: the Ginzburg–Landau equation, the Kuramoto–
Sivashinsky equation and the Cahn–Hilliard equation.



Technically the main challenge in this program is to prove uniqueness
of invariant measures and hence ergodicity for stochastic PDEs with phy-
sically realistic stochastic forcing. We still have not achieved this goal.
However, progress has been made due to the work of a number of people.
Flandoli and Maslowski [FM95] proved uniqueness of the invariant
measure for stochastically forced Navier–Stokes equation when the forcing
amplitudes on the modes decay algebraically with some rate. In [BKL]
and [EMS], uniqueness of the invariant measure for the stochastic
Navier–Stokes equation is proved when all determining modes are forced.
In [EMatt], E and Mattingly proved uniqueness of the invariant measures
for finite-dimensional truncations of the Navier–Stokes equations when
only a few (viscosity-independent) large scale modes are forced. Related
results for the stochastic Ginzburg–Landau equation and stochastic Navier–
Stokes equation can also be found in [EH00], [KS1], and [MY].
Our strategy follows closely that of [EMS] and consists of two steps.

The first is to reduce the infinite dimensional Markovian dynamics to the
finite dimensional Gibbsian dynamics of the low modes with history
dependence. For this finite dimensional Gibbsian dynamics, the noise is
non-degenerate, i.e., all modes are forced. The second step is to prove that
the measures induced by the dynamics with different past histories are
equivalent. This is done by using Girsanov theorem. The main technique
here is to truncate the growth of the nonlinear terms so that Girsanov
theorem can be appropriately used. This truncation procedure is reminis-
cent of the standard truncation and mollification procedures in studying
distributional solutions of linear PDEs. It is technical in nature, but it does
seem to be the main technical obstacle in our work.
As applications, we study three one-dimensional dissipative evolutio-

nary PDEs with periodic boundary condition on [−p, p]:
Stochastic Ginzburg–Landau equation (SGL)

“u
“t
=Du+u−u3+

“W(· , t)
“t

; (2)

Stochastic Kuramoto–Sivashinsky equation (SKS)

“u
“t
=−D2u−Du−u Nu+

“W(· , t)
“t

; (3)

Stochastic Cahn–Hilliard equation (SCH)

“u
“t
=−D2u+DVŒ(u)+

“W(· , t)
“t

. (4)
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We assumeW(· , t) to be of the form

W(x, t)=C skwk(t) ek(x), (5)

where the wk’s are independent standard Wiener processes and sk ¥ R.
{ek(x), k ¥N}={ 1

`2p
, cos x
`p
, sin x
`p
,..., cos nx

`p
, sin nx
`p
,...} is the basis of L2[−p, p].

Let [x] denote the biggest integer less than or equal to x and define
Ha={u=;k ¥N ukek(x),;k [

k
2]
2a |uk |2 <.}. We will work on the proba-

bility space (W,F,Ft, P) generated by {wk}. Expectation E will be taken
with respect to P.
For simplicity of presentation, we only consider the case when only the

low modes are forced. However, we emphasize that our argument applies
with little change to the case when the high modes are also subject to
random forcing, as long as the forcing amplitudes decay sufficiently fast.
The same comment applies to the results in [EMS].

2. THEORY FOR GENERAL STOCHASTIC DISSIPATIVE PDES

Consider stochastically forced PDEs of the form:

du(t)=−Au dt+R(u) dt+dW(t), t \ 0, u(0)=u0, (6)

in a separable Hilbert space H equipped with the inner product O · , ·PH ¥ R.
A is a self adjoint linear operator on domain D(A) …H with eigenvalues
0 [ l1 [ l2 [ · · · [ lN [ · · · , limkQ. lk=. and a complete orthonormal
system of eigenvectors e1,..., eN,..., such that Aei=liei. R is a nonlinear
function from D(R) …H to H. And

W(t)= C
|k| [N

skwk(t) ek(x),

where {wk}’s are independent standard Wiener processes defined on a
probability space (W,F,Ft, P) and sk ¥ R, |sk | > 0.
We will assume that Eq. (6) is uniquely solvable for almost all w ¥ W

and defines a continuous Markovian semi-group denoted by

jws, tu0=u(s, t; w, u0). (7)

We simply write jwt when s=0.
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A probability measure m on H equipped with the Borel s-algebra is
said to be invariant iff

F
H
F(u) m(du)=F

H
EF(jwt u) m(du) (8)

for all bounded continuous functions F on H and t \ 0.
An invariant measure m can be extended to a measure mp on the path

space C((−., 0], H). First, define a cylinder set A:

A={u(s) ¥ C((−., 0], H), u(ti) ¥ Ai, i=0,...n},

where t0 < t1 < t2 · · · tn [ 0 and the Ai’s are Borel sets of H. Let B …H×W

to be

B={(u, w), u ¥ A0, j
w
t0, ti
u ¥ Ai, i=1,...n}

and define mp(A)=(m×P)(B). Then mp is consistent on cylinder sets and
can be extended to the natural s-algebra by Kolmogorov extension theorem.
We define kwt to be the map from C((−., 0], H) to C((−., t], H)

such that given u( · ) ¥ C((−., 0], H), kwt flows forward u( · ) with j from
time 0 to t. In other words, (kwt u)(s)=jws u(0) for s ¥ [0, t] and (k

w
t u)(s)

=u(s) for s [ 0. Let ht be the shift operator such that (htv)(s)=v(s+t),
then htk

w
t defines a function from C((−., 0], H) to itself.

If m is invariant then mp is invariant in the sense that

F
C((−., 0],H)

F(u) dmp(u)=E F
C((−., 0], H)

F(htk
w
t u) dmp(u) (9)

for all bounded functionals F on C((−., 0], H) and t \ 0.
Let m and n be two invariant measures on H and let mp and np be their

respective extensions on C((−., 0], H), it is obvious that mp=np implies
m=n.

2.1. Gibbsian Dynamics

In this section, we will introduce the notion of Gibbsian dynamics of
the low modes. We partition H into two subspaces H=Ha ÀHh defined as:

Ha=span{ek, |k| [N}, Hh=span{ek, |k| > N}.

We will call Ha the space of low modes and Hh the space of high modes.
Denote by Pa and Ph the projections onto Ha and Hh, respectively. Let
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a=Pau and h=Phu. We write u(t)=(a(t), h(t)) and rewrite the stochastic
equation (6) in terms of a(t) and h(t):

da(t)=[−Aa+PaR(u)] dt+dW(t), (10)

dh(t)
dt
=−Ah+PhR(u). (11)

We will show that for statistically invariant solutions of (6) existing for
time from −. to +., h is uniquely determined by the past history of a
from −. to 0 for almost all u(t).
We will impose a number of conditions on (6).

Condition 1. There exist constants g > 0 and k0 \ 0 such that

−OAx, xPH+OR(x), xPH [ −g |x|2H+k0. (12)

Condition 1 guarantees that basic energy estimates hold for (6). Define
E0=; |sk |2. The following lemma will be proved in Section 4.1.

Lemma 2.1. Let m be an invariant measure on H and let mp be the
corresponding measure induced on C((−., 0],H). Then under Condition 1,
-K0 > 0 and d > 12 , for mp-almost every trajectory u( · ) in C((−., 0], H),
,T1 such that for s [ 0

|u(s)|2H [ 2k0+E0+K0 max(T1, |s|)d. (13)

Condition 2. Let u1, u2 ¥H and let r=u1−u2. There exist a con-
stant a ¥ [0, 1) and a non-negative function K(u) on H such that

OR(u1)−R(u2), rPH [ aOAr, rPH+K(u1) |r|
2
H. (14)

Furthermore,

F
H
K(u) dm(u) [ b (15)

for some constant b independent of the invariant measure m.

A consequence of the second part of Condition 2 is that given any
ergodic invariant measure m, for mp-almost all u( · ) ¥ C((−., 0], H) :

lim
t0 Q −.

1
t−t0

F
t

t0
K(u(s)) ds [ b. (16)
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Define the set U … C((−., 0], H) to consist of all v: ((−., 0]QH)
such that v satisfies (13) and (16). By definitions, if Conditions 1 and 2 are
satisfied, then for any ergodic invariant measure m, mp(U)=1.
We will use a(t) to refer to the value of the low mode at time t and will

use L t to mean the entire trajectory from −. to t. Hence a(t) ¥Ha and
L t ¥ C((−., t], Ha) and a(s)=L t(s) for 0 [ s [ t. By Fs(L t, h0) with
s [ t, we mean the solution to (11), the equation for the high mode,
at time s with initial condition h0 and low mode forcing L t. Of course
Fs(L t, h0) only depends on the information of L t between 0 and s. So is
Ft0, t(L

t, h0) defined for the solutions starting from t0.

Lemma 2.2. Under Conditions 1 and 2, if we choose N sufficiently
large such that

− c=−(1−a) lN+b < 0, (17)

then the following holds for any ergodic invariant measure m:
If there exist two solutions of the form u1(t)=(a(t), h1(t)), u2(t)=

(a(t), h2(t)) ¥ U, then u1=u2, i.e., h1=h2.
Moreover if u(t)=(a(t), h(t)) ¥ U is a solution, then for any h0 ¥Hh

and t [ 0, we have

lim
t0 Q −.

Ft0, t(L
t, h0)=h(t).

Proof of Lemma 2.2. Let r(t)=h1(t)−h2(t). From (11) we have

dr
dt
=−Ar+Ph[R(u1)−R(u2)].

Taking inner product with r and by Condition 2, we have

1
2
d
dt
|r|2H=−OAr, rPH+OR(u1)−R(u2), rPH

[ −(1−a) lN |r|
2
H+K(u1) |r|

2
H.

By the definition of U, ,T2 depending on t and u1 such that for t0 < T2,

−(1−a) lN(t− t0)+F
t

t0
K(u1(s)) ds [ −

c

2
(t− t0).

1130 E and Liu



Hence we have, for t0 < T2,

|r(t)|2H [ |r(t0)|
2
H exp 3 −2(1−a) lN(t− t0)+2 F

t

t0
K(u1(s)) ds4

[ |r(t0)|
2
H exp{− c(t− t0)}.

By Lemma 2.1 we have for any t0 [min{T1, T2},

|r(t)|2H [ 2[2k0+E0+|t0 |
2
3] exp{− c(t− t0)}Q 0,

as t0 Q −.. This completes the proof of the first part of Lemma 2.2.
For the second part, let the high mode of the given solution u(t) be h1

and the solution to (11) starting from t0 and h0 be h2, then we have the
estimate

|r(t)|2H [ |(h(t0)−h0)|
2
H exp 1 −2(1−a) lN(t− t0)+2 F

t

t0
K(u(s)) ds2 .

By the same argument, r(t) goes to zero as t0 Q −.. Hence the limit exists
and equals h(t). L

From now on, we assume that N is large enough such that (17) holds.
Denote by P the set of all a( · ) ¥ C((−., 0], Ha) such that a=Pau for

some u=(a, h) ¥ U. By the assumption for the existence of the solution, we
know the set P is not empty. Because of Lemma 2.2, we can define the
map F0 which reconstructs the high modes of the solution at time zero
from given low mode trajectories stretching from zero back to −.. In this
notation h(0)=F0(L0) where L0 is some ‘‘low mode past’’ in P.
Define Ft(L t)=Ft(L t, F0(L0)). Now given any initial low mode past

of L0 ¥P, we can solve the future of a using the Gibbsian dynamics:

da(t)=[−Aa+G(a(t), Ft(L t))] dt+dW(t), (18)

where

G(a, h)=PaR(a+h).

Thus we have a closed form for the dynamics of the low modes given an
initial past L0 ¥P. We write L t=Swt L

0.

2.2. Equivalence Between Measures

In this section, we prove that the measures induced by the Gibbsian
dynamics with different past histories are equivalent. This is done using
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Girsanov theorem. Some conditions are necessary to ensure that the non-
linear terms do not grow too fast so that Girsanov’s theorem can be safely
used.
Given any L0 ¥P, let Qt(L0, · ) be the measure induced on C([0, t],Ha)

by the dynamics of the equation starting from L0. In other words, Qt(L0, · )
is the distribution of Swt L

0 viewed as a random variable taking values
in C([0, t], Ha). Similarly let Q.(L0, · ) be the distribution induced on
C([0,.), Ha) starting from L0. We also denote by Rt(L0, · ) the distribu-
tion of a(t) on Ha conditioned at starting from L0 at time zero.
Define D(g, f1, f2)=

def G(g, f1)−G(g, f2). Suppose L t=Swt L
0 for some

L0 ¥P and h̄0 be some high mode initial condition in Hh. Let h(t)=
Ft(L t, F0(L0))=Ft(L t) and h̄(t)=Ft(L t, h̄0). It should be mentioned that
(a(t), h(t)) constitutes a solution for the stochastic equation (6) while
(a(t), h̄(t)) is not necessarily a solution.
Now we impose two conditions on the Gibbsian dynamics (18).

Condition 3. -L0 ¥P, h̄0 ¥Hh and a ¥ (0, 1), ,K > 0 such that

P 3F.
0
|D(a(t), h(t), h̄(t))|2H dt < K4 > 1−a > 0. (19)

Condition 4. -L0 ¥P, a ¥ (0, 1) and T > 0, ,K > 0 such that

P 3FT
0
|G(a(s), h(t))|2H ds < K4 > 1−a > 0. (20)

Lemma 2.3. Assume that Condition 3 holds. Let L10 and L
2
0 be two

initial pasts in P such that L01(0)=L
0
2(0), then Q.(L

0
1, · ) and Q.(L

0
2, · ) are

mutually equivalent.

Lemma 2.4. Under Condition 4, -L0 ¥P, Rt(L0, · ) is equivalent to
the Lebesgue measure m( · ).

For any measure m on H, let Pam be its projection to the low modes
space Ha. Namely, (Pam)(B)=m(P−1a (B)). Then we have the following
direct consequence of Lemma 2.4.

Corollary 2.5. Under Condition 4, if m is an ergodic invariant
measure then Pam has a component which is equivalent to the Lebesgue
measure.
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Proof of Lemma 2.3. Define

A(K)=3F t ¥ C([0,.), Ha) :

F
.

0
|D(F t(s), Fs(F s, h1(0)), Fs(F s, h2(0)))|

2
H dt < K4 ,

where hi(0)=F0(L
0
i ), i=1, 2.

Then Condition 3 says that we can choose K big enough such that

P{w: Swt L
0
i ¥ A(K)} > 1−a, i=1, 2.

Hence, Q.(L
0
i , A(K)) > 1−a. Since a is arbitrary, it is sufficient to prove

that for any choice of K > 0, Q.(L
0
1, · 5 A(K)) is equivalent to Q.(L02,

· 5 A(K)).
We consider the following truncated processes y which will agree with

a on the set A=A(K). As before, y(t) denotes the value of the process at
time t and Y t means the entire trajectory up to time t.

dyi(t)=[−Ayi(t)+Gt(Y
t
i) G(yi(t), Ft(Y

t
i , hi(0)))] dt+dW(t),

yi(0)=ai(0),

where

Gt(f )=˛
1 if f ¥ A(K)|[0, t],

0 if f ¨ A(K)|[0, t].

A(K)|[0, T] is the set of the low mode paths which stay in A(K) up to time T.
Let Qy.(L

0
1, · ) and Q

y
.(L

0
2, · ) be the measures induced by Y1 and Y2

respectively. Girsanov theorem will imply the result if the corresponding
Novikov condition holds:

E exp 3 12 F
.

0
|S−1Gt(Y

t
1) D(y1(t), Ft(Y

t
1, h1(0)), Ft(Y

t
1, h2(0)))|

2
H dt4 <.,

where S is a diagonal matrix with the sk’s on the diagonal, i.e., S=
diag(s1,..., sN). Since |S−1| <., it would be enough to show that

sup
w

F
.

0
|Gt(Y

t
1) D(y1(t), Ft(Y

t
1, h1(0)), Ft(Y

t
1, h2(0)))|

2
H dt < K <.,
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which is implied by the definitions of A(K) and G and the fact that y
agrees with a on A(K). L

Proof of Lemma 2.4. Fix L0 ¥P. The proof proceeds by comparing
the process a(t) to the process x(t) defined by the following stochastic
ODE:

dx(t)=−Ax(t) dt+dW(t), x(0)=a(0).

And define AT to be

AT(b0)=3F t ¥ C([0,.), Ha) : F
T

0
|G(F t(s), Fs(F s, h0))|

2
H ds < b0 4 ,

where h0=F0(L0) and b0 is an arbitrary positive constant.
We use the truncation technique again. Define z(t) to be the solution

of:

dz(t)=[−Az(t)+Gt(Z t) G(z(t), Ft(Z t, h0))] dt+dW(t), z(0)=a(0).

As above, Gt(Z t) is a cut-off function defined as:

Gt(f )=˛
1 if f ¥ AT |[0, t],

0 if f ¨ AT |[0, t].

Let Qxt (L
0, · ) and Qat (L

0, · ) be the two measures induced on
C([0, t],Ha) by the dynamics of x and a respectively. Observe that
z(t)=l(t) as long as the trajectories stay in AT, the Girsanov theorem will
imply Qxt (L

0, AT) is equivalent to Q
a

t (L
0, AT) for 0 [ t [ T if the following

Novikov condition holds:

E exp 3 12 F
t

0
|S−1Gs(Z s)|2 |G(z(s), Fs(Z s, h0))|

2
H ds4 <..

It is sufficient to prove the stronger condition

sup
z( · ) ¥ AT

F
t

0
|G(z(s), Fs(Z s, h0))|

2
H ds <.,

which is implied by the definition of AT.
By Condition 4, we can make the measure of AT as close as enough

to 1 by increasing b0. Then we can conclude that Q
x
t (L

0, · ) is equivalent to
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Qat (L
0, · ). Notice that x(t) is an Ornstein–Unlenbeck process with non-

degenerate noise, and thus a Gaussian random variable with positive
density. Its distribution is equivalent to the Lebesgue measure. So we know
that Rt(L0, · ) is equivalent to the Lebesgue measure. L

2.3. Uniqueness of the Invariant Measure

Let m be an ergodic invariant measure on H for dynamics (6) and mp
be its extensions to the path space C((−., 0], H). We will also consider
the restriction of mp to C((−., 0], Ha), still denoted by mp. Consider the
stochastic process defined by htS

w
t L

0 where L0 is a random variable on P

distributed according to an invariant measure mp. For t \ 0 it is a random
process with values in P. Since mp is invariant with respect to the dynamics,
htS

w
t L

0 is a stationary random process. Hence with probability one there
exist time averages along trajectories htS

w
t L

0.
Take any bounded measurable functional F from C((−., 0], Ha)Q R

such that F(L0) depends only on L0 on a finite time interval. Let

F̄=F F(L) dmp(L). (21)

Theorem 1. Suppose that the stochastic PDE (6) satisfies Condi-
tions 1–4 and N is large enough such that (17) holds , then (6) has a unique
invariant measure.

The proof here is basically the same as the one given in [EMS] for the
stochastic Navier–Stokes equation. We give it here for self-completion.

Proof of Theorem 1. Suppose m1 and m2 are two different ergodic
invariant measures on H. Then they are mutually singular. Let mp, 1 and
mp, 2 be their extensions onto the path space P, we can find a functional
F defined as above such that F̄1=> F(L) dmp, 1(L) ] F̄2=> F(L) dmp, 2(L).
Let L0i be a random variable on P distributed as mp, i. The limit

lim
TQ.

1
T

F
T

0
F(htS

w
t L

o
i ) dt=F̄i

is well defined for P-almost every w.
For a ¥Ha , define P i(a)={L ¥P : L(0)=a} and let mp, i( · |a) be the

conditional measure that L(0)=a. By Fubini’s theorem, we know that for
Pami-almost every a ¥Ha we have mp, i(P i(a) | a)=1. Hence we can find
a set Ai …Ha such that mp, i(P i(a) | a)=1 for all a ¥ Ai and Pami(Ai)=1.

Gibbsian Dynamics and Invariant Measures 1135



Define A=A1 5 A2. Corollary 2.5 implies that Pami(A) > 0 for i=1, 2.
Hence there exists some ag ¥ A.
Since ag ¥ A1 5 A2, we know that mp, i(P i(ag) | ag)=1 for i=1, 2. Thus

there exist some Lg , 1 ¥P1(ag) and Lg , 2 ¥P2(ag). Notice that by construc-
tion Lg , 1(0)=ag=Lg , 2(0) and hence it follows from Lemma 2.3 that
Q.(Lg , 1, · ) and Q.(Lg , 2, · ) are equivalent. Since Lg , i ¥P i(ag), we know
that we can pick Bi … C([0,.), H) such the time average of F converges to
F̄i for all futures in Bi and Q.(Lg , i, Bi)=1 for i=1, 2. Since the Q’s are
equivalent, Q.(Lg , i, B1 5 B2) > 0 and hence B1 5 B2 is non-empty. This in
turn implies that F̄1=F̄2 which contradicts the assumption that they were
not equal. L

3. APPLICATIONS

In this section, we will discuss three popular stochastic PDEs intro-
duced in the first section. We will show that they satisfy the conditions
given in last section for the uniqueness of the invariant measure. Projecting
(2), (3) and (4) onto L2, we obtain the following Itô stochastic systems:
Stochastic Ginzburg–Landau equation (SGL)

du(x, t)=(Du+u−u3) dt+dW(x, t); (22)

Stochastic Kuramoto–Sivashinsky equation (SKS)

du(x, t)=−(D2u+Du+u Nu) dt+dW(x, t); (23)

Stochastic Cahn–Hilliard equation (SCH)

du(x, t)=(−D2u+DVŒ(u)) dt+dW(x, t). (24)

The existence and uniqueness of the solution for the initial value problem
associated with stochastic Ginzburg–Landau equation (22) in H1 can be
found in [DPZ96] as a special case of the dissipative equations. The exis-
tence of at least one invariant measure is also given in [DPZ96]. With our
assumptions on V(x), the stochastic Cahn–Hilliard equation is also dis-
sipative, so the same results for the SCH equation (24) can be given in
the same way. As to the stochastic Kuramoto–Sivashinsky equation (23),
notice that the linear part on the right side is the generator of a contractive
C0-semigroup on H2 and the nonlinear term is of the Burgers type. Hence
based on Lemma 3.2 later, the same results for SKS equation (23) can be
proved using an argument similar to that for the Burgers equation in
[DPZ96].
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3.1. Ginzburg–Landau Equation

The notations are those of Section 2. H is the space L2[−p, p]. And
for every v ¥H2,

Av=−Dv, R(v)=v−v3.

The eigenvectors of A are

{ek(x), k ¥N}

=3 1
`2p

,
1

`2p
cos x,

1

`2p
sin x,...,

1

`2p
cos nx,

1

`2p
sin nx,...4

with eigenvalues ln=[
n
2]
2, n=1, 2,... . Here [x] means the biggest integer

less than or equal to x.
The Poincaré inequality gives

|Nv|2L2+|v|
2
L
1 \ |v|2L2 and |gv|2L2 \ |Nv|

2
L
2. (25)

And the Sobolev inequality in one dimension has the form:

2 |v|2L. [ |v|
2
L
2+|Nv|2L2. (26)

Since H1 … L4 and

|u(t)|L1 [ (2p)
1
2 |u(t)|L2, |u(t)|L2 [ (2p)

1
4 |u(t)|L4, (27)

we have

|u(t)|2L1+|u(t)|
2
L
2−|u(t)|4L4 [ (2p+1) |u(t)|

2
L
2−(2p)−1 |u(t)|4L2 [ k0

for some constant k0 and hence

−OAu, uPL
2+OR(u), uPL

2=−|Nu|2L2+|u|
2
L
2−|u|4L4

=−|Nu|2L2−|u(t)|
2
L
1+|u(t)|2L1+|u|

2
L
2−|u|4L4

[ −|u|2L2+k0.

This establishes Condition 1 for the SGL equation with g=1 and k0.
Let r=u1−u2, we have

OR(u1−u2), rPL
2=|r|2L2−O(u

3
1−u

3
2), rPL

2 [ |r|2L2,

which means the SGL equation satisfies Condition 2 with a=0, K(u)=1
and b=1. (17) is equivalent to N> 3. From now on, we assume N> 3.
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The following lemma describes the the growth rate of |u(t)|2L2 and
|Nu(t)|2L2 on a set with probability arbitrarily close to 1.

Lemma 3.1. -d > 12 , a ¥ (0, 1) and C0 > 0, ,C(d, a, C0) > 0 such that
if |u0 |

2
L
2+|Nu0 |

2
L
2 < C0,

P 3 |u(t)|2L2+|Nu(t)|2L2+2 F
t

0
|gu(s)|2L2 ds [ C0+C1t+C(t+1)

d for all t \ 04

\ 1−a,

where C1=2k0+E0+E1 and E1=; [k2]
2 |sk |2.

Proof. Applying Itô’s formula to the map u(t)W |u(t)|2L2 and u(t)
W |Nu(t)|2L2 produces

d|u(t)|2L2=2[−|Nu(t)|
2
L
2 dt+|u(t)|2L2 dt− |u(t)|

4
L
4 dt+Ou(t), dWPL

2]+E0 dt
(28)

and

d|Nu(t)|2L2=2[−|gu(t)|
2
L
2 dt+|Nu(t)|2L2 dt−3 |u(t) Nu(t)|

2
L
2 dt

−Ogu(t), dWPL
2]+E1 dt

[ 2[− |gu(t)|2L2 dt+|Nu(t)|
2
L
2 dt−Ogu(t), dWPL

2]+E1 dt. (29)

Combining with (28) and (29) and using inequality (27) give the energy
inequality after integration

|u(t)|2L2+|Nu(t)|
2
L
2+2 F

t

0
|gu(s)|2L2 ds

[ |u0 |
2
L
2+|Nu0 |

2
L
2+(2k0+E0+E1) t

[+2 F
t

0
Ou(s), dW(s)PL

2−2 F
t

0
Ou(s),gdW(s)PL

2.

LetMt=> t0 Ou(s), dW(s)PL
2 andM1

t=−> t0 Ou(s),gdW(s)PL
2. Since |u0 |

2
L
2+

|Nu0 |
2
L
2 < C0, we only need to show that for C large enough

P{2Mt+2M
1
t [ C(t+1)

d for t \ 0} \ 1−a.
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The quadratic variation [M, M]t and [M1, M1]t satisfy the inequalities

[M, M]t [ s2max F
t

0
|u(s)|2L2, [M1, M1]t [ (Ds)2max F

t

0
|u(s)|2L2,

where s2max=sup |sk |
2 and (Dsmax)2=sup |k2sk |2. Hence

([M, M]t)p [ s2pmax 1F
t

0
|u(s)|2L2 2

p

[ s2pmaxt
p−1 F

t

0
|u(s)|2pL2 ds,

([M1, M1]t)p [ (Ds)2pmax 1F
t

0
|u(s)|2L2 2

p

[ (Ds)2pmax t
p−1 F

t

0
|u(s)|2pL2 ds.

From Corollary 4.2, we know that if |u(0)|2L2 < C0 then for any p \ 1
there exists a constant Cp so that E |u(t)|

2p
L2 [ Cp for all t \ 0. Define the

events

Ak=3 sup
s ¥ [0, k]

|Ms | >
C
4
kd4 .

By the Doob–Kolmogorov martingale inequality and Martingale Moment
inequality we have

P{Ak} [
42pE |Mk |2p

C2pk2pd
[
42pĆpE([M, M]k)p

C2pk2pd
[
42ps2pmaxĆpCp
C2p

kp

k2pd
.

And notice that

P 3Mt [
C
4
(t+1)d for t \ 04 \ 1−P 30

k
Ak 4 \ 1−C

k
P{Ak}.

For the sum of P{Ak} to be finite, we only need d > 1+(1/p)2 . And the sum
can be made as small as we want by increasing C. By a similar argument
P{M1

t [
C
4 (t+1)

d for all t \ 0} can also be made as close as enough to 1 by
increasing C. Let C to be big enough such that P{Mt >

C
4 (t+1)

d for some
t \ 0} < a2 and P{M

1
t >

C
4 (t+1)

d for some t \ 0} < a2 . Then

P{2Mt+2M
1
t [ C(t+1)

d for t \ 0} \ 1−a.

By the arbitrariness of p, we have the conclusion. L

Next we show that the SGL equation satisfies the Condition 3. Fix
L0 ¥P and h̄(0) a high mode initial value at time zero. Let L s=Sws L

0
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and a(s)=L t(s) for s [ t. Then with probability one, h(s)=Fs(L s) where
u(s)=(a(s), h(s)). Fix a constant C0 such that |u(0)|

2
L
2+|Nu(0)|2L2 [ C0. For

any positive C we define

D(C)=3f ¥ C([0,.), L2a ) :

|v(t)|2L2+|Nv(t)|
2
L
2+2 F

t

0
|Dv(s)|2L2 ds < C0+(2k0+E0+E1) t+Ct

4
5,

where v(s)=f(s)+Fs(f, F0(L0))4 .

Projecting u(t) onto Ha, by Lemma 3.1 we know that for any a ¥ (0, 1),
there exists a C such that

P{w: Swt L
0 ¥ D(C)} > 1−a > 0.

Putting h̄(s)=Fs(L s, h̄(0)), r(s)=h(s)− h̄(s), then u=a+h=a+h̄+r and
we have

|D(a(s), h(s), h̄(s))|2L2

= sup
w ¥ L

2, |w|=1
|OPa(r[u2+u(u−r)+(u−r)2], wP|2

[ sup
w ¥ L

2, |w|=1
(|NPaw|

2
L
2+|Paw|

2
L
2) |r[u2+u(u−r)+(u−r)2]|2L1

[ C(N) |r|2L2 (|u|
4
L
4+|r|4L4)

[ 1
2C(N) |r|

2
L
2 (|u|4L2+|u|

2
L
2 |Nu|2L2+2 |r|

4
L
4). (30)

Notice that if L t ¥ D(C) then for all t ¥ [0, T]

|u(t)|2L2 < C0+(2k0+E0+E1) t+Ct
4
5,

|Nu(t)|2L2 < C0+(2k0+E0+E1) t+Ct
4
5.

In addition, we can apply the same analysis as in Section 2.1 to obtain

|r(t)|2L2 [ |r(0)|
2
L
2 exp 31−2 5N

2
6 2+22 t4 [ 4C0 exp 31−2 5

N
2
6 2+22 t4 .
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For |r|4L4, we have

1
4
d|r(t)|4L4
dt

=ODr, r3PL
2+|r|4L4−Or[u2+u(u−r)+(u−r)2], r3PL

2

[ −3ONr, r2 NrPL
2+|r|4L4 [ |r|

4
L
4.

Thus

|r(t)|4L4 [ |r(0)|
4
L
4 exp(4t) [ 16C20 exp(4t).

By assumption that N> 3, |r(t)|2L2 and |r(t)|
2
L
2 |r(t)|4L4 go to zero exponen-

tially fast when L t ¥ D(C) and hence the estimate on the right hand side of
(30) decays exponentially fast. Thus,

sup
{w: Swt L

0
¥ D(C)}

F
.

0
|D(a(t), Ft(L t, F0(L0)), Ft(L t, h̄(0)))|

2
L
2 dt < K(C) <.

for some constant K(C). Thus Condition 3 holds.
We now move to Condition 4. Fix L0 ¥P. Before continuing let us

assume without loss of generality that |a(0)|L2 [ C0 and t [ T for some
positive C0 and T. Define

DT(b0)=3f ¥ C([0,.), L2a ) : F
t

0
|v(r)|6L2 dr < (b0C0)

6 T for 0 [ t [ T,

where v(s)=f(s)+Fs(f, F0(L0))4 .

By Lemma 3.1, which says |u|2L2 grows polynomially on arbitrarily large
sets, P{w: Swt L

0 ¥ DT(b0)} can be made as close as we wish to 1 by increas-
ing b0. We will show that

sup
Lt ¥ DT

F
t

0
|G(a(s), Fs(L s, F0(L0)))|

2
L
2 ds <..

Let h(s)=Fs(L s, F0(L0)), then we have the following estimate on G:

|G(a(s), Fs(L s, h0))|L2

= sup
w ¥ L

2, |w|L2=1
Oa−(a+h)3, PawP

[ |a|L2+C sup
w ¥ L

2, |w|L2=1
(|Pa Nw|

2
L
2+|Paw|

2
L
2)
1
2 O|a+h|2, |a+h|P

[ 1
3 |a|

3
L
2+1+C(N)(||h(s)|

3
2 |2L2+||a|

3
2 |2L2 ).
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By Sobolev inequality,

||a|
3
2 |2L2 [ |a|L. |a|2L2 [

1

`2
(|a|2L2+|Na|

2
L
2)
1
2 |a|2L2 [ Ĉ(N) |a|

3
L
2.

By Lemma 4.4 we know that if L t is in DT then sups ¥ [0, t] |h(t)|L2 is less than
some C1, where C1 depends on |h0 |L2 and the b0, C0 and T used to define DT.
Hence for any a ¥ DT, we have

F
t

0
|G(a(s), Fs(L s, h0))|

2
L
2 ds [ CŒ F

t

0
[|a(s)|6L2+||h(s)|

3
2|4L2+1] ds

[ CŒ(b0C0)6 T+CœC
6
1t+CŒt.

Thus Condition 4 is satisfied.
Then we have the following theorem:

Theorem 2. For N> 3, the stochastic Ginzburg–Landau equation
(22) has a unique invariant measure.

In [EH00], Eckman and Hairer proved uniqueness of the invariant
measure for the stochastically forced Ginzburg–Landau equation when all
but a few low modes are forced. J. Mattingly has informed us that he has
also obtained the same result as in Theorem 2 using similar ideas.

3.2. Kuramoto–Sivashinsky Equation

We assume the initial condition and the random perturbation to be
odd in the stochastic Kuramoto–Sivashinsky equation, which is equivalent
to the no-slip boundary condition on [0, p]. Hence the solution is also
odd. The same results for the general case is promising if we combine the
technique in [CEES] and [G] with the strategy here. But this has not been
achieved.
Thus we can discuss this problem in Ḣ, the space of all odd functions

in L2. Then {sin(kx), k ¥N} gives a basis for Ḣ. Let Ḣa=Ḣ 5Ha denote
the subspaces of odd functions of Ha. Let us consider the Schrödinger
operator on L2[−p, p]:

K=D2w−qw, (31)

where q is in Ċ.per={k ¥ C., k(x)=k(x+2p), >p−p k(x) dx=0}. K acts
on L2 and its domain is H4. If q is an even function we observe that K
maps Ḣ4 into Ḣ, and we denote by K0 its restriction to Ḣ with domain
D(K0)=Ḣ4. The proof of the following lemma can be found in [T97].
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Lemma 3.2. For any a > 0, there exists an even function q in Ċ.per
such that

(K0w, w) \
1
2 |Dw|

2
L
2+a |w|2L2. (32)

Suppose u is the solution of the stochastic Kuramoto–Sivashinsky
equation (23). Let u=w+j, where j is an odd function such that
q=− 12 Nj satisfies Lemma 3.2 with a=2. By integration, we can get j

from q. Then SKS equation (23) becomes:

dw(x, t)=−D2w−Dw−j Nw−w Nj−w Nw+g(j)+dW(t), (33)

where g(j)=−D2j−Dj−jNj. We will discuss the SKS equation in the
form of (33). We introduce the the following notations:

Aw=D2w, R(w)=−Dw−j Nw−w Nj−w Nw+g(j),

where {ek(x)}={sin(kx)}, k ¥N and lk=k4.
By Lemma 3.2 and the way we choose j, we have

− 12 OwNj, wPL
2 [ 1

2 |Dw|
2
L
2−2 |w|2L2.

And by interpolation

|Nw|2L2+Og(j), wPL
2 [ |w|L2 |Dw|L2+|g(j)|L2 |w|L2

[ 1
4 |Dw|

2
L
2+2 |w|2L2+

1
4 |g(j)|

2
L
2.

Therefore

−OD2w, wPL
2+OR(w), wPL

2=−|Dw|2L2+|Nw|
2
L
2− 12 Ow Nj, wPL

2+Og(j), wPL
2

[− 14 |Dw|
2
L
2+14 |g(j)|

2
L
2,

which means the SKS equation satisfies the Condition 1 with g=1
4 and

k0=
1
4 |g(j)|

2
L
2. Moreover, we have:

Lemma 3.3. -d > 12 , a ¥ (0, 1) and C0 > 0, ,C(d, a, C0) > 0 such that
if |w0 |

2
L
2 < C0,

P 3 |w(t)|2L2+12 F
t

0
|Dw(s)|2L2 ds [ C0+C1t+C(t+1)

d for all t \ 04 \ 1−a,

where C1=
1
2 |g(j)|

2
L
2+E0.

Gibbsian Dynamics and Invariant Measures 1143



Proof. The energy equation reads

|w(t)|L2+
1
2 F

t

0
|Dw(s)|2L2 ds [ |w0 |

2
L
2+(12 |g(j)|

2
L
2+E0) t+2 F

t

0
Ow(s), dW(s)PL

2.

LetMw
t=> t0 Ow(s), dW(s)PL

2. Notice that

[Mw, Mw]t [ s2max F
t

0
|w(s)|2L2.

By an argument similar to the proof of Lemma 3.1, we have the conclu-
sion. L

Now we move to the Condition 2. Suppose r=w1(t)−w2(t) ¥Hh,
then

OR(u1)−R(u2), rPL
2=O−Dr−Ph[j Nr+r Nj+w1 Nw1−w2 Nw2], rPL

2

=|Nr|2L2−
1
2 ONj, r2P+12 O[r(w1+w2)], NrP

=|Nr|2L2−
1
2 ONj, r2P+12 O[r(2w1−r)], NrP

=|Nr|2L2−
1
2 ONj, r2P+Ow1, r NrP.

By Lemma 3.2,

− 12 ONj, r2P [ 1
2 |Dr|2L2−2 |r|

2
L
2.

Using Sobolev inequality, we have

Ow1, r NrP [ |r|L. |w1 Nr|L1 [ |w1 |L2 |Nr|2L2.

So

OR(u1)−R(u2), rPL
2 [ 1

2 |Dr|2L2+|Nr|2L2−2 |r|
2
L
2+|w1 |L2 |Nr|2L2

[ 1
2 |Dr|2L2+|Dr|L2 |r|L2−2 |r|

2
L
2+|w1 |L2 |Dr|L2 |r|L2

[ 3
4 |Dr|2L2+2 |w1 |

2
L
2 |r|2L2.

By Lemma 4.3, we know that |w|L2 is in L2(m) and

F |w|2L2 dm [ 1
2 |g(j)|

2
L
2+E0.

Thus the SKS equation satisfies the Condition 2 with a=3
4 , K(w)=2 |w|

2
L
2

and b=|g(j)|2L2+2E0. Equation (17) is equivalent to N
4 > 4(|g(j)|2L2+2E0).

From now on, we assume N4 > 4(|g(j)|2L2+2E0).
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To check Condition 3, fix L0 ¥P and h̄(0) a high mode initial value.
Let L s=Sws L

0 and a(s)=L t(s) for 0 [ s [ t. Then with probability one,
h(s)=Fs(L s) where u(s)=(a(s), h(s)). Fix a constant C0 such that
|w(0)|2L2=|L

0(0)|2L2 [ C0. For any positive C we define

D(C)=3f ¥ C([0,.), L2a ) :

|w(t)|2L2+
1
2 F

t

0
|Dw(s)|2L2 ds [ C0+(

1
2 |g(j)|

2
L
2+E0) t+Ct

4
5,

where v(s)=f(s)+Fs(f, F0(L0))4 .

By Lemma 3.3, we know that for any a ¥ (0, 1) there exists a C such that

P{w: Swt L
0 ¥ D(C)} > 1−a > 0.

Let h̄(s)=Fs(L s, h̄(0)), r(s)=h(s)− h̄(s), then w=a+h=a+h̄+r and we
have

|D(a(s), h(s), h̄(s))|2L2=
1
4 sup
v ¥ L

2, |v|=1
|OPa(Nr(2w−r)), vP|2

=1
4 sup
v ¥ L

2, |v|=1
|Or(2w−r), NPavP|2

[ C sup
v ¥ L

2, |v|=1
(|DPav|

2
L
2)(|r|4L2+|r|

2
L
2 |w|2L2)

[ C(N)(|r|4L2+|r|
2
L
2 |w|2L2). (34)

Notice that if L t ¥ D(C) then for all t ¥ [0, T]

|w(t)|2L2 < C0+(
1
2 |g(j)|

2
L
2+E0) t+Ct

4
5,

F
t

0
|w(s)|2L2 ds [ F

t

0
|Dw(s)|2L2 ds [ 2C0+(|g(j)|

2
L
2+2E0) t+2Ct

4
5.

In addition, applying the same analysis as in Section 2.1, we have

|r(t)|2L2 [ |r(0)|
2
L
2 exp 3 − 12N4t+4 F

t

0
|w(s)|2L2 ds4

[ 4C0 exp{−
1
2N

4t+8C0+4(|g(j)|
2
L
2+2E0) t+8Ct

4
5}.
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Assume that N4 > 8(|g(j)|2L2+2E0), we see then the estimate on the right
hand side of (34) decays exponentially fast when L t ¥ D(C). Thus,

sup
w: Swt L

0
¥ D(C)

F
.

0
|D(a(t), Ft(L t, F0(L0)), Ft(L t, h̄(0)))|

2
L
2 dt < const. K(C) <.,

which implies that the SKS equation satisfies Condition 3 when N4 >
8(|g(j)|2L2+2E0).
To Condition 4, define DT to be

DT(b0)=3f ¥ C([0,.), L2a ) : F
t

0
|v(r)|4L2 dr < (b0C0)

4 T for 0 [ t [ T,

where v(s)=f(s)+Fs(f, F0(L0))4

By Lemma 3.3, which says that |w|2L2 grows polynomially on arbitrarily
large sets, P{w: Swt L

0 ¥ DT(b0)} can be made as close as we wish to 1 by
increasing b0. We will show that

sup
Lt ¥ DT

F
t

0
|G(a(s), Fs(L s, F0(L0)))|

2
L
2 ds <..

Let a(s)=Fs(Ls, h0))where h0=F0(L0), we have the following estimate onG:

|G(a(s), Fs(L s, h0))|L2= sup
w ¥ L

2, |w|L2=1
|OD(a+j)+(h+a+j) N(h+a+j), PlwP|

[ sup
w ¥ L

2, |w|L2=1
|Oa+j, DPawP|+

1
2 |O(a+h+j)2, NPawP|

[ C(j) sup
w ¥ L

2, |w|L2=1
|PaN ·Dw|L2 (|h|

2
L
2+|l|2L2+1)

[ C(N, j)(|h|2L2+|l|
2
L
2+1).

By Lemma 4.5 and the fact that j is a constant with respect to time, we
know that if L t is in DT then sups ¥ [0, t] |h(t)|L2 is less than some C1, where
C1 depends on |h0 |L2 and the b0, C0 and T used to define DT. Hence for any
a ¥ DT, we have

F
t

0
|G(a(s), Fs(L s, h0))|

2
L
2 ds [ CŒ F

t

0
[|a(s)|4L2+|h(s)|

4
L
2+1] ds

[ CŒ(b0C0)4 T+CœC
4
1t+CŒt.

So the SKS equation satisfies Condition 4.
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Then we can conclude the theorem for the SKS equation:

Theorem 3. For N4 > 8(|g(j)|2L2+2E0), the stochastic Kuramoto–
Sivashinsky equation (23) has a unique invariant measure.

3.3. Cahn–Hilliard Equation

We assume that the random perturbation and the initial condition
have zero means in the stochastic Cahn–Hilliard equation. As a conse-
quence, the solution also has zero mean. Define Ha={v ¥Ha, and
>p−p v(x) dx=0}, the subspace of Ha with zero means. We will work on
space H0 with the following notations:

Au=D2u, R(u)=DVŒ(u).

Then {ek}={
cos x
`p
, sin x
`p
,..., cos kx

`p
, sin kx
`p
,...}, lk=[

n+1
2 ]

4, k ¥N. We suppose
that V(u) is twice continuously differentiable and satisfies the following
condition:

b=sup |Vœ(u)| < 1.

Then we have

−OAu, uPL
2+OR(u), uPL

2=−|Du|2L2−OVœ(u) Nu, NuPL
2

[ sup
k ¥N
(−k4+bk2) |u|2L2

[ (−1+b) |u|2L2.

So the SCH equation satisfies the Condition 1 with g=1−b and k0=0.
For Condition 2, by the same argument

OR(u1)−R(u2), rPL
2=OD(VŒ(u1)−VŒ(u2)), rPL

2

[ sup |Vœ( · )| |Nr|2L2

[ b |Nr|2L2.

By Poincaré inequality, we know the SCH equation satisfies Condition 2
with a=b and K(u)=0. Equation (17) is equivalent to N \ 1.
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Lemma 3.4. -d > 12 , a ¥ (0, 1) and C0 > 0, ,C(d, a, C0) > 0 such that
if |u0 |

2
L
2 < C0,

P 3 |u|2L2+2(1−b) F
t

0
|u(s)|2L2 ds [ C0+E0t+C(t+1)d for all t \ 04 \ 1−a.

Proof. Applying Ito’s formula to u(t)W |u(t)|2L2, we have

d|u|2L2=2[−|Du|
2
L
2+ODVŒ(u), uPL

2] dt+2Ou, dWPL
2+E0 dt

[ 2(b−1) |u|2L2 dt+2Ou, dWPL
2+E0 dt.

By Corollary 4.2 and an argument similar to the proof of Lemma 3.1, we
can have the conclusion. L

Now we go to the Condition 3 for SCH equation. Fix L0 ¥P and h̄(0)
a high mode initial value. Let L s=Sws L

0 and a(s)=L t(s) for s [ t. Then
with probability one, h(s)=Fs(L s) where u(s)=(a(s), h(s)). It would be
enough to show that

sup
w

F
.

0
|D(a(t), Ft(L t, F0(L0)), Ft(L t, h̄(0)))|

2
L
2 dt <..

Putting h̄(s)=Fs(L s, h̄(0)), r(s)=h(s)− h̄(s), then u=a+h=a+h̄+r,
and we have

|D(a(s), h(s), h̄(s))|2L2= sup
w ¥ L

2, |w|=1
|OPaD(VŒ(u)−VŒ(u−r)), wP|2

= sup
w ¥ L

2, |w|=1
|O(VŒ(u)−VŒ(u−r), DPawP|2

[ sup
w ¥ L

2, |w|=1
|DPaw|

2
L
2 |r|2L2

[ C(N) |r|2L2. (35)

While r satisfies the following equation:

dr=[−D2r+PhD(VŒ(u1)−VŒ(u2))] dt.

So by the same argument in Condition 2,

1
2
d
dt
|r|2L2=−|Dr|2L2−ON(VŒ(u1)−VŒ(u2)), NrP

[ −|Dr|2L2+b |Nr|2L2 [ (−1+b) |r|
2
L
2.
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Hence

|r(t)|2L2 [ |r(0)|
2
L
2 exp{2(b−1) t} [ 4C0 exp{2(b−1) t}.

Thus the right hand side of (35) decays exponentially fast. Thus,

sup
w

F
.

0
|D(a(t), Ft(L t, F0(L0)), Ft(L t, h̄(0)))|

2
L
2 dt <.,

which implies Condition 3 for the SCH equation.
For Condition 4, first define DT to be

DT(b0)=3f ¥ C([0,.), L2a ) : F
t

0
|v(r)|2L2 dr < (b0C0)

2 T for 0 [ t [ T,

where v(s)=f(s)+Fs(f, F0(L0))4 .

By Lemma 3.4, which says |u|2L2 grows polynomially on arbitrarily big sets,
P{w: Swt L

0 ¥ DT(b0)} can be made as close as enough to 1 by increasing b0.
We will prove that

sup
Lt ¥ DT

F
t

0
|G(a(s), Fs(L s, F0(L0)))|

2
L
2 ds <..

Let h(s)=Fs(Ls, h0)) and h0=F0(L0)), we have the following estimate on G:

|G(a(s), Fs(L s, h0))|
2
L
2= sup

w ¥ L
2, |w|L2=1

|OPaDVŒ(h+a), wP|2

= sup
w ¥ L

2, |w|L2=1
|OVŒ(h+a), DPawP|2

[ sup
w ¥ L

2, |w|L2=1
|Pa N ·Dw|

2
L
2 (|h+a|L1+VŒ(0))

[ C(N)(|h|L2+|a|L2+c).

By Lemma 4.6 we know that if L t is in DT then sups ¥ [0, t] |h(t)|L2 is less than
some C1, where C1 depends on |h0 |L2 and the b0, C0 and T used to define DT.
Hence for any L t ¥ DT, we have

F
t

0
|G(a(s), Fs(L s, h0))|

2
L
2 ds [ CŒ F

t

0
[|a(s)|2L2+|h(s)|

2
L
2+c] ds

[ CŒ(b0C0)2 T+CœC
2
1t+CŒct.

Hence the Condition 4 is satisfied by the SCH equation.
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Now we have the theorem for the stochastic Cahn–Hilliard equation:

Theorem 4. For N \ 1, the stochastic Cahn–Hilliard equation has a
unique invariant measure.

4. ESTIMATES

4.1. Energy Estimates

In this section, we will give some energy estimates for general stochas-
tic dissipative PDEs under Condition 1. As before, define the constants
E0=; |sk |2, s2max=sup |sk |2 and (Dsmax)2=sup |k2sk |2.

Lemma 4.1. For any p \ 1, we have

E |u(t)|2pH+2gp F
t

0
E |u(s)|2pH ds [ E |u(0)|2pH+C0 F

t

0
E |u(s)|2(p−1)H ds, (36)

where C0=2p(p−1) s2max+p(2k0+E0).

Proof. Applying Itô’s formula to the map u(t)W |u(t)|2pH and using
Condition 1, we have

d|u(t)|2pH=2p |u(t)|
2(p−1)
H [−OAu(t), u(t)PH dt+OR(u(t)), u(t)PH dt+Ou(t), dWPH]

+2p(p−1) |u(t)|2(p−2)H
1C
k
|uk(t)|2 |sk |22 dt+p |u(t)|2(p−1)H E0 dt

[ 2p |u(t)|2(p−1)H [−g |u|2H dt+k0 dt+Ou(t), dWPH]

+2p(p−1) s2max |u(t)|
2(p−1)
H dt+p |u(t)|2(p−1)H E0 dt. (37)

For a fixed H> 0, define the stopping time T to be

T=inf{t \ 0 : |u(t)|2H \H2}.

Denoting byMt the local martingale term in (37), define

MT
t=F

t

0
2p |u(sNT)|2(p−1)H Ou(sNT), dW(s)PH.

Let [MT, MT]t to be the quadratic variation ofM
T
t , then

[MT, MT]t [ 4p2s
2
max F

t

0
|u(sNT)|4p−2H ds [ 4p2s2maxH

4p−2t <..
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So E[MT, MT]t <.. Hence M
T
t is a martingale and EMT

t=0. By the
Optional Sampling theorem we have EMT

tNT=0. Since MtNT=M
T
tNT, we

have

E |u(tNT)|2pH+2gpE F
tNT

0
|u(s)|2pH ds

[ E |u(0)|2pH+[2p(p−1) s2max+p(2k0+E0)] E F
tNT

0
|u(s)|2(p−1)H ds.

Since u(t) is continuous in time, TQ. as HQ. and hence TN tQ t.
Thus we obtain

E |u(t)|2pH+2gpE F
t

0
|u(s)|2pH ds

[ E |u(0)|2pH+[2p(p−1) s2max+p(2k0+E0)] E F
t

0
|u(s)|2(p−1)H ds. L

By Gronwall’s inequality, we have the following estimates uniformly in
time.

Corollary 4.2.

E |u(t)|2H [ e−2gtE |u(0)|2H+1
2k0+E0

2g
2(1−e−2gt). (38)

And for any p > 1

E |u(t)|2pH [ e−2gptE |u(0)|2pH+C0 F
t

0
e−2gp(t−s)E |u(s)|2(p−1)H ds. (39)

Now we establish a number of properties, derived from Corollary 4.2,
that invariant measures for general SPDEs of the form (6) must have.

Lemma 4.3. Let m be an invariant measure on H for Eq. (6). Then
for any p \ 1 there exists a constant Cp <. such that

F
H
|u|2pH dm(u) < Cp. (40)
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Proof. Suppose p=1. Then -E > 0, ,bE such that m{u ¥H : |u|2H
[ bE} > 1− E. Let BE={u ¥H : |u|2H [ bE}. Then -H> 0 and t > 0, we have

F
H
(|u|2H NH) dm(u)=F

H
E(|jw0, tu|

2
H NH) dm(u) [HE+F

BE
E(|jw0, tu|

2
H) dm(u).

Applying the first bound (38) in Corollary 4.2 gives

F
H
(|u|2H NH) dm(u) [HE+

(2k0+E0)
2g

+e−2gt 1bE−
(2k0+E0)
2g
2 .

Let tQ. and notice that E was arbitrary, we obtain

F
H
(|u|2H NH) dm(u) [

2k0+E0

2g
.

Let HQ., we obtain (40) for p=1. The argument for higher moments of
the energy is the same. L

Now we give the proof of Lemma 2.1 claimed in Section 2.

Proof of Lemma 2.1. The basic energy estimate, derived from (37),
reads:

|u(t)|2H [ |u(t0)|
2
H+(2k0+E0)(t− t0)−2g F

t

t0
|u(s)|2H ds+2 F

t

t0
Ou(s), dW(s)PL

2.

For any k \ 1, the above estimate implies

sup
s ¥ [−k, −k+1]

|u(s)|2H [ |u(−k)|2H+2k0+E0+ sup
s ¥ [−k, −k+1]

Fk(s),

where Fk(s)=−2g >s−k |u(r)|2H dr+2Mk(s) and Mk(s)=>s−k Ou(r), dW(r)PH.
Now define

Ak={u(s): sup
s ¥ [−k, −k+1]

|u(s)|2H [ 2k0+E0+K0 |k−1|d}.

By Borel–Cantelli lemma, we need only to show that ;k > 0 mp(A
c
k) <..

Notice that

mp(A
c
k) [ mp 3u(s): |u(−k)|2H \

K0
2
|k−1|d4

+mp 3u(s): sup
s ¥ [−k, −k+1]

Fk(s) \
K0
2
|k−1|d4 .
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Lemma 4.3 implies that the second moment of the energy under the
invariant measure is uniformly bounded by some constant C2. Hence
Chebyshev’s inequality produces

mp 3u(s): |u(−k)|2H \
K0
2
|k−1|d4 [ 4

K20 |k−1|
2d F

H
|u(−k)|4H [

4C2
K20 |k−1|

2d ,

which is summable as long as d > 12 .
For the second term, first notice that with probability one,

[Mk, Mk](s)=F
s

−k
C
l
|sl |2 |ul(r)|2 dr [ s2max F

s

−k
|u(r)|2H dr.

And hence

Fk(s) [ 2Mk(s)−
2g

s2max
[Mk, Mk](s)

almost surely. And the exponential martingale inequality says that for
positive a and b,

P 3 sup
s ¥ [−k, 0]

Mk(s)−
a

2
[Mk, Mk](s) > b4 [ e−ab.

Taking a= 2g
s2max
and b=K0

4 |k−1|
d we find

mp 3u(s): sup
s ¥ [−k, −k+1]

Fk(s) \
K0
2
|k−1|d4 [ exp 1 − gK0

2s2max
|k−1|d2 .

Since this is summable for any d > 0, the proof is complete. L

4.2. Control of High Modes

4.2.1. Ginzburg–Landau Equation

Lemma 4.4. If h(t) is the solution to (11) of the SGL equation with
some low mode forcing a ¥ C([0, t], L2a ), then sups ¥ [0, t] |h(s)|L2 is bounded
by a constant depending on |h(0)|L2 and > t0 |a|4L2 ds.

Proof. Taking the inner product of (11) with h produces

1
2
d
dt
|h(t)|2L2=−|Nh|

2
L
2+|h|2L2−OPh(l+h)

3, hP

=−|Nh|2L2+|h|
2
L
2−Ol3, hP−3Ol2h, hP−3Olh2, hP−Oh2, h2P.
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Since

h4+3lh3+94 l
2h2 \ 0, 3

4 l
2h2+l3h+13 l

4 \ 0,

we have

1
2
d
dt
|h(t)|2L2 [ |h|

2
L
2+
1
3
|l2|2L2 [ |h|

2
L
2+
1
3
|l|2L. |l|

2
L
2

[ |h|2L2+
1
6
|l|2L2 (|l|

2
L
2+|Nl|2L2).

Since a ¥ L2a we have |Na|L2 [ C(N) |a|L2 where N=sup{|k|: ,ek with ek ¥ L2a},
and hence after applying Gronwall’s Lemma we have

|h(t)|2L2 [ |h(0)|
2
L
2 exp(2t)+C1 1F

t

0
|a|4L2 ds2 exp(2t). L

4.2.2. Kuramoto–Sivashinsky Equation

Lemma 4.5. If h(t) is the solution to (11) in the SKS equation with
some low mode forcing a ¥ C([0, t], L2a ), then sups ¥ [0, t] |h(s)|L2 is bounded
by a constant depending on |h(0)|L2 and > t0 |a|4L2 ds.

Proof. Taking the inner product of (11) with h produces

1
2
d
dt
|h(t)|2L2=−|Dh|

2
L
2+|Nh|2L2−OPhN(a+h)

2, hP

=−|Dh|2L2+|Nh|
2
L
2−2Oa Na, hP+2Oah, NhP.

Since

−|Dh|2L2+|Nh|
2
L
2 [ 0, −2Oa Na, hP [ 2 |Da|L2 |a|L2 |h|L2 [ |Da|

2
L
2 |a|2L2+|h|

2
L
2

and

2Oah, NhP=−ONa, h2P [ |Da|L2 |h|
2
L
2,

we have

1
2
d
dt
|h(t)|2L2 [ |h|

2
L
2+|Da|L2 |h|

2
L
2+|Da|2L2 |a|

2
L
2.
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And we also have |Dl|L2 [ C(N) |l|L2. Hence after applying Gronwall’s
Lemma we have

|h(t)|2L2 [ |h(0)|
2
L
2 exp 12C F

t

0
|a|L2 ds+2t2

+C1 1F
t

0
|a|4L2 ds2 exp 12C F

t

0
|a|L2 ds+2t2 .

By Hölder inequality (> t0 |a|L2 ds)4 [ t3 > t0 |a|4L2 ds, the proof is complete. L

4.2.3. Cahn–Hilliard Equation

Lemma 4.6. If h(t) is the solution to (11) in the SCH equation with
some low mode forcing a ¥ C([0, t], L2a ), then sups ¥ [0, t] |h(s)|L2 is bounded
by a constant depending on |h(0)|L2 and > t0 |a|2L2 ds.

Proof. Taking the inner product of (11) with h and making use of
the assumption on V produce

1
2
d
dt
|h(t)|2L2=−|Dh|

2
L
2−ONVŒ(l+h), NhP=−|Dh|2L2−OVœ(u) N(l+h), NhP

[ −|Dh|2L2+|Nh|
2
L
2+|Nl|L2 |Nh|L2 [ −|Dh|

2
L
2+
3
2
|Nh|2L2+

1
2
|Nl|2L2.

Since −|Dhk |L2+
3
2 |Nhk |L2=(−k

4+32 k
2) |hk |

2
L
2 [ C1 |hk |

2
L
2, for someconstantC1,

we have −|Dh|2L2+
3
2 |Nh|

2
L
2 [ C1 |h|

2
L
2. And we also have |Nl|2L2 [ C(N) |a|

2
L
2,

and hence after applying Gronwall’s Lemma we have

|h(t)|2L2 [ |h(0)|
2
L
2 exp(2C1t)+C 1F

t

0
|a|2L2 ds2 exp(2C1t). L
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